If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2-10=0
a = 5; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·5·(-10)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2}}{2*5}=\frac{0-10\sqrt{2}}{10} =-\frac{10\sqrt{2}}{10} =-\sqrt{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2}}{2*5}=\frac{0+10\sqrt{2}}{10} =\frac{10\sqrt{2}}{10} =\sqrt{2} $
| 8-6x=3x^2-8x+2 | | (2x-25)=(x+5) | | 3^(2x-4)=-9 | | 7x-3=3(x+1)+3 | | 1/2x÷1/4=x | | 3^{2x-4}=-9 | | 4x+24-15x=13 | | 7x+4+9x+6=90 | | 5(k+2)-k-3=-6(k+3)+5 | | 2(x-5)+6=x+8 | | 9.4x=4-9x | | 15/p=25/6 | | (m+8)(m+9)=-16 | | 11x=1111 | | z/10+1=1 | | 11x^2-620x+320=0 | | (0.5)^x=0.1 | | 3(x+2)-(2x-4)=-(4x+5) | | 5+7x=5x+21 | | 3(x2+1)–(3x+1)(x+1)=0 | | 8-8x=3x^2-10x+3 | | 7x=4=10x-20 | | x^-12x+36=36 | | 80p^2-125=0 | | 3x+x-12=63 | | 75000=1432x/92-x | | 3x2-12=63 | | 250n^2-490=0 | | 6-6x=3x^2-8x+2 | | 20m(m+2)=19m-4 | | 0.6/5=x/7 | | 3X+5y=140 |